
Contents lists available at ScienceDirect

Ecological Economics

journal homepage: www.elsevier.com/locate/ecolecon

Predicting fires for policy making: Improving accuracy of fire brigade
allocation in the Brazilian Amazon
Thiago Fonseca Morelloa,*, Rossano Marchetti Ramosb, Liana O. Andersonc, Nathan Owend,
Thais Michele Rosane, Lara Steilb
a Federal University of ABC, Brazil, Alameda da Universidade, S/N, Bairro Anchieta, São Bernardo do Campo/SP 09606-045, Brazil
bNational Centre for Prevention and Suppression of Forest Fires (PREVFOGO/IBAMA), SCEN Trecho 2, Edifício Sede, Brasília, DF, Brazil
c Brazilian Centre for Monitoring and Early Warnings of Natural Disasters (Cemaden), Brazil, Estrada Doutor Altino Bondensan. Eugênio de Mello, 12247016 - São José
dos Campos, SP, Brazil
d Land, Environment, Economics and Policy Institute, University of Exeter Business School, Xfi Building, Rennes Drive, Exeter EX4 4PU, UK
e Brazilian Institute for Space Research (INPE), Av. dos Astronautas, 1.758 - Jardim da Granja, São José dos Campos, SP, Brazil

A R T I C L E I N F O

Keywords:
Amazon
Fire
Land use
Panel data
Spatial econometrics

A B S T R A C T

The positioning of federal fire brigades in the Brazilian Amazon is based on an oversimplified prediction of
fire occurrences, where inaccuracies can affect the policy's efficiency. To mitigate this issue, this paper
attempts to improve fire prediction. Firstly, a panel dataset was built at municipal level from socio-
economic and environmental data. The dataset is unparalleled in both the number of variables (48) and in
geographical (whole Amazon) and temporal breadth (2008 to 2014). Secondly, econometric models were
estimated to predict fire occurrences with high accuracy and to infer statistically significant predictors of
fire. The best predictions were achieved by accounting for observed and unobserved time-invariant pre-
dictors and also for spatial dependence. The most accurate model predicted the top 20% municipal fire
counts with 76% success rate. It was over twice as accurate in identifying priority municipalities as the
current fire brigade allocation procedure. Of the 47 potential predictors, deforestation, forest degradation,
primary forest, GDP, indigenous and protected areas, climate and soil proved statistically significant.
Conclusively, the current criteria for allocating fire brigades should be expanded to account for (i) so-
cioeconomic and environmental predictors, (ii) time-invariant unobservables and (iii) spatial auto-
correlation on fires.

1. Introduction

The fate of the Amazon remains a matter of great concern for
researchers, policy makers and a wide range of private and third
sector stakeholders, including traditional and indigenous popula-
tions. This remains true despite the fact that deforestation, one of
the main threats to regional conservation, has been reduced by 58%
in the past ten years (2007 to 2017; Prodes, 2019; Godar et al.,
2014; Barlow et al., 2016). Indeed, ongoing forest degradation by
timber extraction, and by fires used to manage land for (small and
large scale) agriculture, remains rampant and may result in an
ecological loss comparable to that of deforestation (Barlow et al.,
2016; Berenguer et al., 2014). Fires not only damage flora and
fauna by spreading accidentally from agricultural fields and pas-
tures (Mendonça et al., 2004; Barlow et al., 2012), but may release

more carbon than the rainforest sequesters (Balch, 2014). They also
are the main source of air pollution in the rural Amazon, with major
health consequences (Reddington et al., 2015; Jacobson et al.,
2012; Silva et al., 2016). Over 140,000 fires were detected in both
2015 and 2017, a level last observed before 2008 when deforesta-
tion was at least twice as high (INPE, 2018). The main factors in-
fluencing recent fire occurrences are anthropogenic ignition
(mainly related with changes in land cover, Carmenta et al., 2018;
Cano‐Crespo et al., 2015; Nepstad and Schwartzman, 1999), climate
change which is making the Amazon hotter and drier (Aragão et al.,
2018; Vasconcelos et al., 2013; Marengo et al., 2013; Betts et al.,
2008; Coe et al., 2013) and forest degradation/fragmentation cou-
pled with previous use of fire (Barlow et al., 2012 and 2016).

To mitigate the impacts mentioned, federal and local governments
have been implementing policies targeted at preventing fires and
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suppressing forest fires.1 Prevention policy includes partial or full bans
on agricultural fire use at state level (enforced with surveillance and
sanctions), subsidy to fire-free land management practices (e.g., agro-
forestry and non-timber forest products) and environmental education,
among other minor interventions (Carmenta et al., 2013; Prevfogo,
2019a; Morello et al., 2017). Fire suppression, the largest item in the
federal fire policy budget (Morello et al., 2017), is mainly targeted at
uncontrolled fires spreading across forested landscapes (hereafter
“forest fires”). Forest fires are tackled by state and municipal fire bri-
gades, as well as by federal fire brigades funded by the Environment
Ministry. From 2010–2014, federal fire brigades were allocated to 56
municipalities of the Legal Amazon per year, with 1900 firefighters/
year being employed, representing an expenditure of US$ 3.1 million/
year, 1% of the federal budget allocated to the environment (Prevfogo,
2019b). The federal, state and municipal brigades are responsible for
supressing fires in the whole Legal Amazon territory (over 5 million
km2), a challenge well beyond the budget available (Morello et al.,
2017; Brown et al., 2011). The gap between the area to be protected
and capacity to protect (a general characteristic of Amazon conserva-
tion policy, see Boyd, 2008a,b) is being widened by the fiscal crisis
across all levels of Brazilian government (Montes and Acar, 2018;
WWF, 2018). The reach of fire brigades is limited, especially in remote
areas, meaning that the burden of fire suppression is often left for
landholders, many of them poor smallholders that lack the necessary
means, yet suffer disproportionately when forests and fields are lost to
wildfire (Carmenta et al., 2013 and 2018). Therefore, there is a pressing
need for greater efficiency of forest fire suppression policy, due to both
the considerable and nondecreasing frequency of fires and associated
forest fire risk and the scarcity of budgetary resources.

One way to achieve greater efficiency is to improve the planning of
fire brigade positioning. Such planning is a great challenge due to the
large size of the Brazilian Amazon (five million km2, 20% deforested), of
its states (565,442 km2 in average) and municipalities (6530 km2 in
average), and the pervasiveness of both controlled (set for farming and
deforestation purposes) and uncontrolled (escaped) fires. Currently, the
data and methods used for planning fire brigade positioning lag far be-
hind the state-of-the-art of current research on Amazon fires, and fail to
do justice to the size of the challenge2 . First3, too few variables and short
time periods are considered for identifying top priority jurisdictions
(states and sub-state sets of municipalities). Here, the data consists of
counts of fires detected within federal-owned forested land in the pre-
vious four years, as well as the type of land (protected area, indigenous
land or agrarian settlement, Ramos, 2018; Prevfogo, 2013). No further
variables are considered. This fails to capture the multidimensional
nature of fire predictors and their recent dynamics influenced by climate
change (Arima et al., 2007; Tasker and Arima, 2016; Aragão et al., 2018;
Marengo et al., 2011). Second, the interdependence among proximate
municipalities, which share common levels of fire and of fire predictors,

is imperfectly captured by the "mesoregion" approach. This approach
consists of spatially refining the selection of priority states by assessing
fire counts in sets of socioeconomically similar municipalities ("mesor-
egions"). However, academic studies suggest that spatial dependence is
driven not only by socioeconomic factors, but also by land use, climate
and physical factors (Faria and Almeida, 2016; Hansen and Naughton,
2013; Silvestrini et al., 2011). In summary, there is considerable scope
for increasing the efficiency of fire brigade positioning policy by nar-
rowing the gap between current decision making and scientific research.
To contribute to this, two research questions are answered in the paper.
Firstly, which econometric model most accurately predicts municipal-
level fire counts? Secondly, which predictors suggested by literature have
a significant effect on municipal-level fire counts?

Three main research tasks were pursued. First, a comprehensive and
up-to-date review of the multidisciplinary literature on Amazonian fires
was carried out to identify potential predictors of fires. Second, a panel
dataset with 47 potential predictors was assembled at the Brazilian
Amazon municipal scale. The dataset comprised high-resolution land use
data, institutional and socioeconomic information, and satellite mea-
surements of physical and climatic factors, including fires. Both forest
and non-forest fires were considered. Four years were covered (2008,
2010, 2012 and 2014), thus capturing Amazon's recent period of lower
deforestation, which has been little studied in the literature. Over 98% of
the Legal Amazon territory was analyzed. Third, ten econometric panel
data models were estimated, comprising standard fixed and random ef-
fects as well as their count data and spatial variants. As far as the authors
are aware, this is the first study to present an analysis of Amazon fire
detections incorporating all relevant predictors stressed in the literature
and also the state-of-the-art of spatial panel data econometrics.

An outline of the remainder of the paper is as follows. The next
section clarifies, initially, the link between brigade positioning and fire
prediction. It then presents a literature review on potential predictors of
satellite-detected fires, which are taken in the paper as a proxy for
forest fires. The data and methodology are described in Sections 3 and 4
respectively. Results and discussion are presented in Section 5 and the
paper is concluded in Section 6.

2. Literature review on the predictors of fires

2.1. Theory and main assumption of empirical analysis

To understand the precise relationship between efficient fire brigade
allocation and accurate prediction of fires, a simple model of fire bri-
gade allocation is now presented4 . In the counterfactual situation
where full information on municipal levels of fire occurrence is avail-
able a priori, the government’s problem of selecting municipalities for
fire brigade allocation can be stated as follows:

Max{s} B(s’F), s.t. C(1′s) = C, F is given
Where B(.) is the aggregate benefit of avoiding fires in the whole

Amazon. “s” is a N x 1 vector of binary variables that take value one at
the position of selected municipalities and zero otherwise (its transpose
is denoted by s’). “F” is the N x 1 vector of ex-post fire occurrences
observed across municipalities. It is assumed, for simplicity, that (i)
once fire brigades arrive in a municipality, all forest fires are ex-
tinguished and (ii) total fire detections, F, is a valid proxy for forest
fires. Thus s'F is the number of avoided forest fires. C(.) is the aggregate
cost, “C” is the budget, which is assumed to be fully expended. 1′ is a 1 x
N vector of ones that performs the sum operation, such that 1′s is the
number of municipalities selected. For simplicity, linear benefit and
cost functions are assumed. This follows below, with “b” being the
unitary benefit of avoiding one accidental fire, and “c” the unitary cost
of establishing brigades in one municipality and N ≡ C/c.

1 An important clarification must be made regarding the two main definitions
of fire use in the paper, namely, (i) (accidental) forest fires and (ii) satellite fire
counts which comprise forest and non-forest fires, and, thus, intended agri-
cultural fires as well (see Section 2.2 below for detailed definitions). These two
definitions have different roles in the paper which need to distinguished. First,
fire brigades fight only forest fires, i.e., escaped unintended fires. Therefore all
policy prescriptions here provided refer exclusively to such type of fire and the
term “suppression” means, strictly, elimination of forest fires, as they bring only
damage to society. Second, to identify, with econometric prediction, priority
municipalities for brigade allocation, all fires are considered, including non-
forest (and non-accidental) fires, as justified in Section 2.1 below.
2 As one reviewer suggested, this gap may be due to the budgetary and

technical capacity constraints faced by government personnel responsible for
brigade planning and implementation, in line with Rajão and Vurdubakis
(2013, p.160) findings regarding the practice of deforestation control.
3 As local governments do not publicize information on planning criteria, the

procedure here described is the one employed for federal brigades.

4 We thank one of the reviewers for arguing on the need for an explicit for-
mulation of this problem.
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Max{s} b.s’F, s.t. 1′s = N, F is given
With the number of municipalities fixed by the constraint, the solution

to this problem of maximization of total avoided forest fires is to select the
top N municipalities in fire occurrences. Which is exactly the criterion
currently used by the federal government. Solution will be denoted as
s*(F), with s*(.) being the function that assigns ones to the positions, in the
F vector, of top N municipalities and zero to the remaining positions
(parameters “N” and “b” are omitted to simplify notation).

However, the true municipal levels of fire occurrences, F, are ex-
post observed, after fire brigades are sent. Only fire occurrences in
previous years are observed ex-ante. Thus, the (factual) problem faced
by government in practice is an incomplete information problem in
which F has to be predicted:

=Max b.s’F, s.t. 1 s N, F F̂{s}

(where the symbol “≡” indicates that predicted fire occurrences are
assumed to equal true ex-post fire occurrences)

The solution, s*(F̂), differs from the true best allocation, s*(F). The
main implication is that the aggregate (squared) allocation error,
measured as 1′(s*(F̂) - s*(F))2, is positively related with the aggregate
(squared) fire prediction error, 1 (F̂ F)' 2, whether the positions (iden-
tities) of the top N municipalities differs between F and F̂5 . This
highlights the importance of improving fire prediction accuracy. As this
requires the incorporation of all reasonable potential predictors of fires,
the following subsections synthesize the knowledge on predictors ac-
cumulated in the literature, indicating potential predictors by “[P]”.

Before passing to the next section, an important detail should be
highlighted. In line with previous studies (Silvestrini et al., 2011; Anderson
et al., 2017), the assumption that total fire detections are a valid proxy for
forest fires is kept throughout the paper, what deserves further clarifica-
tion. Total fire detections comprise not only forest fires but also intended
agricultural fires. These are potential sources of accidental fires
(Cano‐Crespo et al., 2015; Anderson et al., 2017; Cochrane, 2010, chap.14,
Nepstad et al., 2001). They should therefore be accounted for in the pre-
diction of fires that aims to base the allocation of firefighting effort
(Silvestrini et al., 2011; Dube, 2013). This is especially true due to the
evidence of partial and minor adoption of fire control techniques by fire
users (Carmenta et al., 2018; Nepstad et al., 2001; Arima et al., 2007;
Carvalheiro, 2004). Notwithstanding, it must also be informed that fire
brigades are not legally entitled with the duty (or prerogative) to punish
(e.g., fine) the use of fire, even when the latter is conducted illegally or
recklessly. This means fire suppression by brigades cannot threat food
security of fire-dependent smallholders. Such is the first reason for con-
sidering all fires in the prediction exercises conducted in the paper and, in
coherence, to account for the predictors of intended fires (as detailed in
the next section). The second reason is that counting fire detections be-
longing to specific fire classes (section 2.2) is out the scope of the paper, as
this would require intensive remote sensing techniques which remain
prone to significant error (Cano‐Crespo et al., 2015; Acevedo-Cabra et al.,
2014). There is no robust method for distinguishing between categories of
fire in the literature. Also, most studies do not classify fire detections be-
fore analysing them (see, for example, Tasker and Arima, 2016;
Vasconcelos et al., 2013; Silvestrini et al., 2011).

2.2. Land use and land cover change (LUCC)

Fires in the Amazon can be classified according to the reason for
which they are ignited and the land cover they spread through. These
classes are presented below (following Fearnside, 1990, Nepstad and

Schwartzman, 1999; Myers, 2006; Cochrane, 2010, chap.14). It is also
relevant to highlight the spatial scale of the different fire classes. For
this, the terms “farm (scale)” and “landscape (scale)” are used in
brackets. The former indicates that the spread of the fire is restricted to
the boundaries of the farm within which it is started, whereas the latter
refers to a wider spread across multiple farms and forested areas.

1 Agricultural fires [farm]: intentional fires for agricultural purposes,
specifically:
a Deforestation fires: aimed at removing debris (slashed vegetation)
resulting from the opening of new fields for agriculture.

b Pasture fires: aimed at managing and restoring pasture.
c Fallow fires: aimed at fertilizing, weeding and cyclically shifting
secondary forest cover (of spontaneous growth) into cropland, as
part of the slash and burn agricultural system.

2 Accidental fires [landscape]: unintentional fires that occur as out-
comes of agricultural fires or careless human activities, namely:
a Forest fires: accidental fires that penetrate standing forest.
b Accidental fires on farmland: penetrates farms harming or ex-
tirpating fixed capital assets (fences, crops, pasture, facilities, etc).

3 Arson fires [landscape]: intended fires motivated by conflicts (re-
taliation/vendetta fires) or by vandalism.

Only class “1″ fires are directly related with land use and land cover
change (LUCC), more precisely, with deforestation [P], pasture [P] and
fallow-based crop growing [P]. The extents of primary [P] and secondary
[P] vegetation are also relevant predictors of agricultural fires. The former
is still used by farmers as natural barriers to contain fires (Carmenta et al.,
2013; Carvalheiro, 2004, p.154, Toniolo, 2004, p.184, Cammelli, 2014,
p.70) and the latter may in part capture fallows and also abandoned land.
Besides deforestation, forest degradation [P] by timber extraction is also a
relevant land use change, as it is generally conducted before slashing and
burning of vegetation (Rappaport et al., 2018; Barlow et al., 2016).

2.3. Agriculture

There is wide evidence on the link between agriculture and fires.
Deforestation, one of the main reasons for burning, was shown by
multiple studies to be influenced by the price of agricultural com-
modities (Hargrave and Kis-Katos, 2013; Assunção et al., 2015; Verburg
et al., 2014). Medium to large scale growers of soybean [P], one of the
main export commodities of the Amazon, are also known for defor-
esting or buying deforested land (Morton et al., 2006; Arima et al.,
2011). Smallholders rely on slash-and-burn mainly to grow annual
staple crops i.e., cassava, maize, cowpea and rice (Kato et al., 1999).
Planting of perennial crops, although initially less relevant among
smallholders, has been increasing on small, medium and large farms,
mainly due to the larger profit per hectare implied (Börner et al.,
2007a; Soler et al., 2014). This higher profitability, coupled with a
higher vulnerability to fire, led some authors to conjecture that the
expansion of perennials may be accompanied by the reduction in fire
usage (Barlow and Peres, 2004; Simmons et al., 2004; Nepstad and
Schwartzman, 1999). Therefore, space and time variation of the prices
of soybean, staple crops and perennials [P] should affect detected fires,
both via the profitability of land and via the expected damage caused by
accidental fires (Bowman et al., 2008; Scatena et al., 1996; Perz, 2003).
This is also the case for the products of cattle ranching, especially the
price of calves, milk and beef [P], whose relation with deforestation are
clearly established by previous studies (Hargrave and Kis-Katos, 2013;
Margulis, 2003; Assunção et al., 2015; Aragão et al., 2008).

Value added by primary activities [P], a measure of the economic
performance of agriculture, also tends to be related with fire use but it is
unclear whether the relationship is positive or negative. Firstly, if studied
from the point of view of productivity, a negative relationship is ex-
pected. This is because the productivity of fire-based agriculture (i.e.,
slash-and-burn), a labour-intensive and small-scale activity, is generally

5 In fact, it is both a sufficient and necessary condition for differences between
s*(F) and s(F̂) that the positions of the top N municipalities differs between F
and F̂ (i.e., the difference refers to “who” the top N are) Whereas such implies in
both positive total squared prediction and allocation errors, all other differences
between F and F̂ do not imply in positive total squared allocation error.
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lower than that of capital-intensive agriculture (Sauer and Mendoza‐
Escalante, 2007; Mburu et al., 2007; Boserup, 1965). Moreover, pro-
ductivity tends to be positively correlated with value added (as synthe-
sized in the Solow growth model, Romer, 2014). Secondly, focussing on
the composition of the municipal economy, more agriculture-dependent
economies may also be more reliant on fires (assuming that the variation
of the share of fire-based agriculture across municipalities is small and
considering that agricultural fields are opened with fire-based defor-
estation). However, this depends of course on the contribution of per-
ennial crops to total agricultural value, both due to the higher value
added by these crops and the incentive they create to reduce fire use
(Börner et al., 2007a; Perz, 2003; Nepstad and Schwartzman, 1999).
Other mechanisms relating to yield and deforestation (linked to fires, see
Section 2.1) are also suggested by the literature. Ewers et al. (2008) and
Marchand (2012) argue that increases in yield (introduced, for instance,
by technology adoption or expansion of perennials) may decrease de-
forestation through a land sparing effect or increase it as further in-
vestment in agriculture is stimulated by the leap in profitability.

In addition, exports of timber [P], a proxy for the level of timber
extraction6, may also correlate with fires as the shift of land from forest
to agriculture is conducted after timber is extracted (Rappaport et al.,
2018; Tasker and Arima, 2016).

2.4. Municipal economy and demography

There is evidence that the size of the municipal economy and the level of
development are predictors of deforestation and therefore could be related to
agricultural fires (Hargrave and Kis-Katos, 2013; Rodrigues et al., 2009 and
Weinhold et al., 2015). Indeed, municipal GDP [P] is, by construction, di-
rectly proportional to the levels of both agricultural production and invest-
ment on fixed capital, the latter including agricultural machinery that can be
used as a substitute for fire. Alternatively, the relationship between GDP and
fire occurrences may be non-linear, following a “Kuznets curve” pattern with
positive and negative covariations prevailing at, respectively, low and high
levels of GDP (Andela et al., 2017; Boserup, 1965). Such pattern, is consistent
with the “industry life cycle theory”. The latter stablishes that economic
development starts with extensive agriculture as the main activity and pro-
ceeds with intensification of agriculture and an increase of manufacture and
service industries (Hall and Caviglia-Harris, 2013; Boserup, 1965). In sum-
mary, the reasons for both a linear and a non-linear relationship seem
plausible enough to justify the accounting of GDP as a potential predictor of
fires. Also, the municipal level of human development [P] tends to be po-
sitively correlated with the level of economic development, this referring
mainly to the adoption of high-productivity and capital-intensive technology,
and, therefore, to the transition to fire-free agriculture (Hall and Caviglia-
Harris, 2013; Andela et al., 2017; Boserup, 1965).

Previous studies suggest a feedback between (a) lack of access to
preconditions for fire-free agriculture, which is associated with income
poverty [P], and (b) low productivity/low capital accumulation (Coomes
et al., 2011; Sorrensen, 2009; Börner et al., 2007b). Such a “fire-based
poverty trap” (paraphrasing Coomes et al., 2011) is strengthened by
unfavourable levels of input and output prices faced by Amazonian
smallholders, who generally live in remote and road-deprived areas
(Sorrensen, 2009). It should be clarified that for simplicity here, poverty
is understood strictly as low income, as a multidimensional approach is
beyond the scope of the paper. However, we recognize the limit of such
an approach for Amazon smallholders, whose integration to market is
limited by structural factors (Guedes et al., 2012).

The literature also suggests that fire has demographic predictors
such as population density and degree of urbanization. The first is in

accordance with the classical Boserupian argument (Boserup, 1965)
that agricultural fires tend to decrease as the land becomes more den-
sely populated [P], a process that favours agricultural intensification
(Metzger, 2003; Roder, 1997). The second predictor, the degree of ur-
banization [P], is also expected to reduce agricultural fires. One reason
for this is that, as at high levels of urbanization, the damage from ex-
ternalities, such as accidental fires and air pollution, may be big enough
to outweigh the benefits from fire (Shafran, 2008; Analitis et al., 2012).
A more straightforward link is that the land available to be burned for
agricultural purposes decreases with urbanization.

Another potential predictor is proximity to roads [P], which is a driver
of agricultural profitability and, consequently, of fire-based deforestation
(Arima et al., 2007; Cardoso et al., 2003; Pfaff et al., 2007; Ewers et al.,
2008; Araujo et al., 2009). It should be noted that the relationship between
access to roads and fire occurrences may be positive, if the effect of prof-
itability on deforestation dominates (Pfaff et al., 2007), or negative, if the
effect of profitability on the expected damage imposed by accidental fires
dominates (Weinhold and Reis, 2008; Bowman et al., 2008).

2.5. Institutions

There are three types of land owned by Brazil’s central government
(hereafter “federal lands”), in which fires may exhibit specific beha-
viours: protected areas [P], agrarian settlements [P] and indigenous
lands [P]. In protected areas, deforestation and agricultural fires are
subjected to harsher legal constraints compared to other areas, and evi-
dence shows that these restrictions are met (Nepstad et al., 2006; Arima
et al., 2007; Nolte et al., 2013). Protected areas of all categories (i.e.,
both strictly protected and of sustainable use) are included in the em-
pirical exercise. In agrarian settlements and indigenous lands, specific
patterns of fire use may also be observed. Agrarian settlements are in-
habited by smallholders that are mostly income poor and face multiple
barriers to adopt alternatives to slash-and-burn, including remoteness,
lack of access to basic public services and poor soil quality (paved roads,
electricity, sanitation, etc.; Guedes et al., 2012; Peres and Schneider,
2012). Thus the utility of fires and, thus, their frequency, tends to be
higher in agrarian settlements, and this is confirmed by previous research
(Anderson et al., 2017; Godar et al., 2014; Carmenta et al., 2018). In-
digenous communities impose a lower pressure on land-based resources
(Nepstad et al., 2006) and rely on fire not only for subsistence agri-
culture, but also for hunting as well as cultural and religious activities
(Leonel, 2000). Nepstad et al. (2006) and Arima et al. (2007) found a
significantly lower number of fires in indigenous lands.

In addition, private property [P] is the type of land tenure most
strongly associated with agriculture (Araujo et al., 2009), and tends to
correspond with a considerable number of fire detections (Anderson
et al., 2015 and 2017, Cano‐Crespo et al., 2015).

Another possible predictor is whether a federal fire brigade was
established in the municipalities [P] in the current year. First, because
fire brigades are allocated based on the fire occurrences expected by
authorities, a function of fire occurrences in previous years (as argued
in the introduction). Second, fire brigades act to contain forest fires,
thus reducing fire detections7 .

6 Exports were considered instead of the value of timber extracted, as data on
the former was missing for 44 of the 719 municipalities analysed (such data is
sourced by the Brazilian Institute of Geography and Statistics survey on ex-
traction and silviculture).

7 The potential endogeneity of fire brigades in a model explaining fires is
mitigated by including, as explanatory variables, a wide range of factors (46 in
total) that could be correlated with brigade allocation if left to the disturbance
term. I.e., we resort to the conditioning on observables (Morgan and Winship,
2006, chap.3) against omitted variable bias. This strategy is reasonable to
achieve the paper's goal of predicting fires, a task that requires incorporation of
all potentially relevant predictors (including fire brigades). It should also be
noted that fire brigades positioning is defined based on fire detections of pre-
vious years, whereas, in the models, fire brigades are related with the fire de-
tections of the current year. The precautions here detailed were taken to ensure
minimum accuracy in the analysis of covariates' significance but precise mea-
surement of causal effects is out of the paper’s scope.
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2.6. Climate and physical factors

Temperature [P] and precipitation [P] are becoming progressively
more influential on fires due to ongoing climate change (Aragão et al.,
2018, Tasker and Arima, 2016, Fonseca et al., 2017; Silvestrini et al.,
2011). The two variables are influential not only across time but also
across space (Vasconcelos et al., 2013; Cano‐Crespo et al., 2015; Marengo
et al., 2011). Vasconcelos et al. (2013) found a strong negative correla-
tion between fire detections and rainfall in the state of Amazonas. Tasker
and Arima (2016) obtained the same result at the level of Amazon mu-
nicipalities. Also, in the fire behaviour model presented by Cochrane
(2010, 14.5 and 14.9.2, fig.14.9), both humidity and temperature enter
as explanatory factors. Biophysical factors related with soil also merit
attention due to their effect on the cost-benefit of fire use (Kato et al.,
1999; Arima et al., 2011; Takasaki, 2011). In particular, slope of the
terrain [P] and soil texture [P] drive the agricultural profitability of land
and also its suitability for mechanization (Robalino and Pfaff, 2012).

3. Data

A detailed description of data sources is found in supplementary
material, Section 1 (SI.1). Here, only the data that required operations
and conventions to be assembled are mentioned. The log(1+x) trans-
formation was applied to all variables measuring area, monetary units,
length and temperature (23 variables). This is because these variables
had numeric scales (order of magnitudes) considerably different from
the remaining variables, which were mostly constrained to the [0:1]
interval. Table 1 provides the definitions and summary of all (pre-
logarithm transformation) variables.

The spatial scale of the data is municipal and the temporal scale is
annual with one-year gaps. The scales were dictated by the resolution of
the data sources. Specifically, the spatial scale was defined by agri-
cultural and socioeconomic data (sections 3.2,3.5 and 3.7 below). The
temporal scale was defined by land use data from the TerraClass project
(INPE, 2019).

3.1. Dependent variable

The dependent variable in the analysis was a count of point detec-
tions of fire (a.k.a “fire hotspots” or “hotpixels”, Giglio et al., 2016).
This datum came from the MODIS sensor of NASA’s Terra satellite and
was pre-processed by the Brazilian Institute for Space Research (INPE).
All fire detections were used without a filter to isolate detections due to
forest fires (as clarified in section 2.1 above).

3.2. Crop price index

Two crop price indices were calculated, based on a municipal crop
survey (IBGE, 2016). The indices were a weighted average of annual
and perennial crop prices, with weights given by the crop’s share of
total production value for main crops. For the annual crop index, the
main crops consisted of soy, rice, cassava, beans and maize. The con-
tribution of these crops to regional agriculture amounted to 87% in
harvested area and 74% in produced value in the period of study (2008,
2010, 2012, 2014). For the perennial index, the main crops consisted of
banana, cocoa, coffee, black pepper and rubber. These crops con-
tributed 74% of harvested area and 73% of produced value. Prices for
the years of study were converted to the purchasing power of currency
in 2008 before calculation of the indices. The FAO’s food price index
formula (FAO, 2013, eq.1), applied to a municipality-year observation
unit, is as follows:
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With “k” indexing crop, “i”, municipality and “t”, year. The symbols
“p.”, “v.” and “q.” refer to implicit price (value/quantum ratio), value
and quantum, respectively. To capture only the variation in prices,
excluding the effect of the crop composition of value, the above index
was based on a reference year (2008) and a reference municipality,
which was the average municipality in 2008. Thus, the weight and
“base price” were calculated as (weighted) averages across munici-
palities. A total of 13 municipalities did not produce annual crops in at
least one of the years (zero value of production). For perennial crops,
zero or missing production were recorded for 174 municipalities. For
these cases, where possible, the average prices of contiguous munici-
palities were imputed. Where this was not possible (no contiguous
municipalities with positive production), second other contiguity was
used (following Hilber and Vermeulen, 2010, Section 4.1).

3.3. Temperature data

Land surface temperature data was taken from NASA’s MODIS sa-
tellite sensor. An examination of monthly temperatures between 2003
and 2014 revealed the existence of two subannual periods of distinct
temperature: January-June and August-October (see Fig. 1). These two
periods approximately match the wet and dry seasons defined by
Marengo et al (2011). Remaining months were assumed to be transition
stages and ignored. In this work, temperature data was averaged across
time into the two subannual periods and across all 5 km pixels located
inside each municipality.

3.4. Soil

A map of physical classification of soil was used (IBGE, 2007 and
2012). Four main textures of soil from a total of six textures were
considered: loamy, clayey, high clayey and sandy. The municipal area
with soils of non-identified texture and minor textures (organic and
silty) were not considered for calculating the areal share of the four
main textures. As the shares are constrained to sum to one, loamy
texture was omitted from models to avoid perfect collinearity.

3.5. Proxy for cattle prices and timber exports

Unfortunately, municipal-level data on cattle prices in the Amazon
is only available for the state of Mato Grosso. To fill this data gap, two
proxy variables were used. The number of employees in the beef pro-
cessing industry was considered, which captures part of the demand for
cattle. Also, cattle herd sizes were used, which is a measure for cattle
supply but also for ranch productivity as whole pasture areas of mu-
nicipalities were controlled for in the models.

Exports of timber in US dollars (purchasing power of 2008), were
obtained from the database of Brazilian Ministry of Industry, Trade and
Services (MDIC, 2018), by selecting the product class “Wood and arti-
cles of wood; wood charcoal”.

3.6. Institutional variables

Institutional variables capture the extent of the three types of fed-
eral lands (see 2.4 above): protected areas, agrarian settlements, and
indigenous lands. The latter was refined based on information about
completion of the main stages of the administrative process of formal
recognition of indigenous ownership by the federal government (as
detailed in FUNAI, 20198). The date in which indigenous lands were
officially defined as state property (“data de regularização”) was
available for 82% of the lands only. Among the remaining lands, only
the ones authorized by the federal parliament to be created

8 The stages captured in the data were “estudo”, “delimitação”, “declaração”,
“homologação” and “regularização”.
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(“declaradas”) were considered. From the authorized lands, it were
excluded those without information about the date when the stages
before authorization were terminated, in order to avoid including lands
not locally recognized as belonging to indigenous people. As the result,

352 of 376 (95%) of the total indigenous lands (September 2016) in the
Legal Amazon region were included.

Aside from federal land types, the area of private property in the
municipality was also considered. This was proxied by the georefer-
enced property boundaries retrieved from the rural-environmental land
registry of federal government (“CAR”, see SICAR, 2018)9 .

3.7. Economy and demography

A range of economic and demographic variables for the munici-
palities were used, including GDP, population, and head-count mea-
sures for income poverty. The latter consisted in the share of house-
holds with income below one minimum wage (∼US$300), using the
latest population census (of 2010). This was broken down into four
intervals with the thresholds of zero, one quarter, half and full
minimum wage.

Two separate variables derived from different sources of road length
data were considered. Firstly, information on official (i.e., government-

Table 1
Definition and summary of variables.

Category Description [measure] Short name Mean [S.D] Range

Dependent variable Number of fire detections [count] fires 204.7 [406] [0:10049]
LUCC Deforestation [km2] defor 9.3 [29.1] [0:731]
LUCC Crops: soy [km2] soy 56 [270.2] [0:3620]
LUCC Crops: fallow (crops mixed with ranching) [km2] fallow 23 [54.5] [0:925]
LUCC Pasture [km2] pasture 552.4 [932.9] [0:12951]
LUCC Primary vegetation [km2] pri_forest 4440.5 [12874.1] [0:147943]
LUCC Secondary vegetation [km2] sec_forest 290.5 [418.7] [0:4400]
LUCC Forest degradation [km2] degrad 16.4 [87.9] [0:2450]
Agriculture Annual crop price index [R$/ton] a_price 0.6 [0.3] [0:2]
Agriculture Perennial crop price index [R$/ton] p_price 0.6 [0.3] [0:2]
Agriculture Value added by primary sector [R$ 106] v_added_prisec 47.9 [72.3] [0:830]
Agriculture Cattle herd [103 heads] herd 105.7 [156.9] [0:2213]
Agriculture Employment in beef industry [count] emp_beef 51.1 [230.2] [0:5262]
Agriculture Timber exports [USD 106] timber_exp 0.9 [6.7] [0:192]
Economy and demography Municipal GDP [USD 106] gpd 392 [2005.1] [7:48149]
Economy and demography Population [103 count] pop 32.6 [104.9] [1:2020]
Economy and demography HDI 2010 [percent] hdi 0.62 [0.06] [0.4:0.8]
Economy and demography Share of households with zero income [%] pov_zero 0.12 [0.09] [0:0.6]
Economy and demography Share of rural households (RHH) with income < 1/4 minimum wage [%] povm025 0.06 [0.04] [0:0.2]
Economy and demography Share of RHH with 1/4 MW < income < = 1/2 MW [%] povM025m05 0.08 [0.05] [0:0.2]
Economy and demography Share of RHH with 1/2 MW < income < = 1 MW [%] povM05m1 0.24 [0.06] [0:0.4]
Economy and demography Urban area [km2] urban 6.5 [20.7] [0:343]
Transport Length of official roads (paved or unpaved) [km] off_roads 113.4 [133.9] [0:1067]
Transport Length of unofficial roads (paved or unpaved) [km] noff_roads 740 [1577.2] [0:18260]

Category Description [measure] Short name Mean [S.D] Range

Institutions Protected areas [km2] protected 864.5 [3895.6] [0:56155]
Institutions Agrarian settlements [km2] settlements 882.9 [2387.2] [0:27115]
Institutions Indigenous lands [km2] indigenous 1544.4 [6459] [0:99307]
Institutions Private properties [km2] acar 2602.9 [3990.3] [0:35898]
Institutions Presence of federal brigade (binary) brif 0.1 [0.3] [0:1]
Biophysical Average annual precipitation [m/year] av_ppt 1.9 [0.5] [1:4]
Biophysical Average temperature, January-June (JJ) [Kelvin] av_temp_JJ 300.3 [2.1] [296:309]
Biophysical Average temperature, August-October (AO) [Kelvin] av_temp_AJ 307 [4.6] [299:318]
Biophysical Slope of the terrain, first quartile [%] slope_p25 0.01 [0.01] [0:0.04]
Biophysical Slope of the terrain, second quartile [%] slope_p50 0.02 [0.01] [0:0.09]
Biophysical Slope of the terrain, third quartile [%] slope_p75 0.04 [0.02] [0:0.22]
Biophysical Soil quality: share of sandy texture in municipal area with identified soil texture [%] soil_sandy 0.14 [0.18] [0:1]
Biophysical Soil quality: share of area with clayey texture [%] soil_clayey 0.2 [0.2] [0:1]
Biophysical Soil quality: share of area with high clayey texture [%] soil_hclayey 0.07 [0.15] [0:1]
Additional controls Municipal area [km2] area 6907.5 [14009.3] [64:159523]
Additional controls Time [year] time 11 [2.2] [8:14]
Additional controls State dummies (nine states) [binary] d_uf omitted [0:1]

Note: the sample contains 2876 observations capturing 719 municipalities of Legal Brazilian Amazon for four years, 2008, 2010, 2012 and 2014. Most of the 52
municipalities excluded were at least partially outside the reach of land use data. Monetary factors (prices, v_added_pri_sec, gdp, timber_exp) are expressed in
purchasing power of 2008.

Fig. 1. Monthly temperature (dots), Legal Amazon average*, and the subannual
averages (dashed lines) for January-June and August-October 2003-2014.
*The graph was computed from the average temperature of all Brazilian Legal
Amazon pixels (longitude between -76° and -44° and latitude between-18° and
5°).

9 Overlaps of property polygons were eliminated before aggregating muni-
cipal areas to avoid double counting.

T. Fonseca Morello, et al. Ecological Economics 169 (2020) 106501

6



owned) roads was obtained using a digital map from the Brazilian
Ministry of Environment (MT, 2018). Secondly, information on un-
official (i.e., built by private landholder) roads was gained using a di-
gital map from the NGO “Imazon” (Imazon, 2018). In both cases, paved
and unpaved roads were considered.

4. Method

4.1. Econometric models

4.1.1. General approach
It is clear that the influence of social and environmental predictors

on fires has both temporal and spatial dimensions (section 2). More-
over, non-observed factors may also be influential. These aspects are
captured by the following general specification for panel data models:

Yit = f(Xit1,…,XitK;Y-it) + uit (0.a)

uit = g(μi,μ-i,vit,v-it) (0.b)

i = 1,…,N, t = 1,…, T

where Yit is the number of fires detected in the i-th municipality at
the t-th time instant, f(.) is a functional form approximating the true
form of the conditional expectation E[Yit|Xit1,…,XitK; Y-it], and Xit1,…,
XitK are K predictors. The disturbance term uit captures unobservable
factors and is made up of two components (Elhorst, 2014; Baltagi, 2005;
Wooldridge Jeffrey, 2002). The first, μi, represents time-invariant un-
observables potentially correlated with covariates, and is referred as
“unobserved heterogeneity”. The second, vit, captures space and time
variant unobservables. The spatial dimension is explicitly introduced by
Y-it, μ-i and v-it, which denote the number of fires and the levels of time
invariant and time variant unobservables, respectively, for proximate
municipalities. For the general model to be “estimable”, assumptions
need to be made about f(.) and g(.). and the main possibilities, which
group into three classes, are detailed in what follows.

4.1.2. Ordinary panel data models
Ordinary panel data models assume that f(.) and g(.) functions are

linear and that spatial independence applies both to the dependent
variable and to the disturbances, as follows (Baltagi, 2005; Wooldridge
Jeffrey, 2002):

1.a Yit =Xitβ + uit

1.b uit = μi + vit

The general form above was estimated with pooled ordinary least
squares (POLS), fixed-effects (FE) and random effects (RE) estimators.

4.1.3. Count data models
Ordinary panel data models do not account for the fact that the de-

pendent variable, in this case the number of fires, is constrained to be a
natural number. As a result, predictions from these models may return
negative or fractional numbers. To generate predictions numerically
consistent with the dependent variable, Poisson (2.a, 2.b, PFE and PRE)
and negative binomial models (fixed-effects, 2’.a, 2’.b, NFE; and random-
effects, 2’’.a, 2’’.b, NRE) are estimated, as specified below (Cameron and
Trivedi, 2009; Wooldridge Jeffrey, 2002; Hausman et al., 1984):

2.a Yit = exp(β’Xit)+ uit

2.b uit = μi + vit

2’.a Yit = exp(β’Xit)/δ+ vit

2’.b V[Yit|X] = exp(β’Xit)(1 + δ)/δ2

2’’.a Yit = μiexp(β’Xit)/φi+ vit

2’’.b V[Yit|X] = μiexp(β’Xit)/φi (1+ μi1/ φi)

The only difference between ordinary and count panel models is
that the latter assume a non-linear form for the f(.) function and, for the
case of the NBFE specification, the unobserved heterogeneity is in-
troduced as a multiplicative factor.

4.1.4. Spatial panel models
Spatial panel models assume a linear form for f(.) and g(.) functions

and also assume spatially autocorrelated dependent variable and dis-
turbances. Fixed-effects (SFE) and random-effects (SRE) estimators
were used. For both approaches it is assumed that the two components
of the disturbance term incorporate spatial autocorrelation in the
fashion of Kapoor et al. (2007). Estimation was pursued with maximum
likelihood (SFEM, SREM) and generalized method of moments (SFEG,
SREG) using the R package “splm” (Millo and Piras, 2012). The func-
tional form is as follows (Elhorst, 2014; Millo and Piras, 2012).

= + +
=

Y w Y X uit
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ij jt it it
3.a

To account for spatial dependency in the unobservables, equation
(0.b) is replaced by:

= + +
=
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where “wij” is the j-th row of the (row-standardized) spatial weights
matrix for which queen contiguity is assumed (i.e., neighbouring mu-
nicipalities are those which share boundaries’ lines or vertices). The
strength of the spatial autocorrelation on the dependent variable and
disturbance term are captured, respectively, by the parameters “λ”
(hereafter simply “spatial effect”) and “ρ”.

4.2. Assessment of model performance

4.2.1. Out of sample prediction
For linear panel data models, the best linear unbiased predictor

(BLUP) “S” steps ahead has the general form (Baltagi, 2008; Fingleton
and Palombi, 2013; Baltagi et al., 2011):

+ŷi T S, = Mi(Zi,T+S’ ˆ
T + correction term), S ≥ 1, i = 1,…, N

Mi = [(IN – T̂ WN)−1]i (the i-th row), for spatial models and Mi = 1
for non-spatial models

where Z’ is a 1 x (K + 1) vector (meaning the intercept is included
in the model). The “correction term” adjusts for the non-spherical
(autocorrelated, Wooldridge Jeffrey, 2002, 10.4.1) structure of the re-
sidual variance-covariance matrix imposed by the presence of un-
observed heterogeneity. For the random-effects spatial and non-spatial
models, the correction term is as follows (Fingleton and Palombi, 2013;
Baltagi et al., 2012, 2011, Appendix).

=
+ =
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T

u
ˆ

ˆ ˆ ˆµ

v µ t

T

it

2

2 2
1

where ˆµ
2 and ˆv

2 are estimates for the variances of the unobserved
heterogeneity and the time-variant components of disturbances re-
spectively. The residuals are represented by û it.10 For fixed-effects
spatial or non-spatial models, the correction term equals the estimate
for the unobserved heterogeneity (Baltagi, 2008), given by =T ût

T
it

1
1 .

The count data models (Poisson and negative binomial) were not
considered for out-of-sample prediction for three reasons. Firstly, the

10 In matrix notation, BLU predictions for spatial RE models are obtained from
the N x 1 matrix P(Xb, Xτ, g)= (1-ˆW)-1(Xτ

ˆ+fΓê). In this equation, “f” is the
variance fraction (term in parentheses in the correction term formula), “Γ” is
the matrix that sums residuals for the i-th unit, “ê” is the vector of residuals, Xb
is the base-data for the estimates ( ˆ, ê and ˆ ), Xτ is the data for predicting Y, and
g is the estimator (MLE/GM).
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concept of “best linear unbiased predictor” is ill-defined as they are not
linear. Secondly, it was not possible to find, in the literature, formulas
for the best (non-linear) predictors of the models. Finally, in-sample
predictions from these models could not be obtained or were con-
siderably less accurate compared to the other models (the only excep-
tion was the random-effects negative binomial).

The out of sample predictions are for 2014 and were based on
models fit to the first three years of data. Their accuracy was assessed
with the root mean squared error (RMSE), the most popular metric in
the literature (Baltagi, 2008; Baltagi and Li, 2004; Chakir and Le Gallo,
2013). RMSE is reported together with another goodness of fit measure,
a pseudo-R2 statistic computed for the whole sample. The pseudo-R2

statistic is calculated as the squared correlation between the observed
and predicted dependent variable, as commonly computed by the
STATA ® software (Cameron and Trivedi, 2009, chap. 8, STATA, 2016)
and as recommended for spatial panels by Elhorst (2014, p.59 and
Table 3.1).

4.2.2. Prediction performance and consistency
Among the three main properties of an estimator, unbiasedness,

consistency and efficiency, it is generally accepted in the practice of
econometrics that the second is the minimal (Wooldridge Jeffrey, 2002,
5.1). The data analysed here is subjected to two main sources of in-
consistency, spatial dependence in the dependent variable, and corre-
lation between unobserved heterogeneity and the explanatory vari-
ables11 . To check for these inconsistencies, Moran’s I and Hausman
tests were applied. It should be noted that for the objectives of this
work, inconsistency is only an issue for the identification of influential
drivers of fire behaviour, where inaccurate estimation of parameters
could lead to the incorrect inference. For the purposes of prediction,
inconsistency is not a primary issue12 . Therefore, in this work all
reasonable panel models and estimators are used for prediction, but the
assessment of covariate influence is mainly based on consistent models.

5. Results and discussion

The results and discussion section is organised as follows. Section
5.1 focusses on model performance, with the most accurate consistent
econometric model identified in Section 5.1.1, and predictions of the
relative level of fire occurrences and prediction volatility being ex-
amined in Section 5.1.2. Section 5.2 assesses and discusses the statis-
tically significant predictors of fire. Finally, Section 5.3 considers im-
plications for fire brigade allocation.

5.1. Prediction performance

5.1.1. Identification of the best predictive model
The spatial random effects (SREM) model delivered the most ac-

curate predictions for 2014, followed by its non-spatial counterpart
(RE). Thus, after addressing unobserved heterogeneity and spatial
autocorrelation, prediction accuracy was improved. Compared with
POLS, RMSE was higher for ordinary FE and 1 % lower for the RE
model. The SREM model reduced RMSE further by 4 %. However, the
spatial RE model estimated with generalized method of moments,
SREG, had lower accuracy than POLS. This was due to unsuccessful
estimation, attested by a negative estimate for the variance of the

unobserved heterogeneity, an occurrence which is not limited to this
paper13 . The difference between spatial and non-spatial FE models
indicated that time-invariant factors, which are accounted for only by
spatial FE, provided relevant contribution for prediction. This point
was reinforced by the fact that non-spatial FE, the only approach that
ignores time-invariant factors, achieved the highest mean percentage
error (non-spatial FE). Prediction was reasonably accurate on average,
with the percent error not exceeding 29 % for the four models with the
lowest RMSE, namely, POLS, RE, SREM and SREG (Table 4).

Using Hausman tests (Table 2), it was found that none of the RE
models were consistent. This also means that the POLS approach was
inconsistent (as it was also subjected to the heterogeneity bias driving
inconsistency). Non-spatial models were also inconsistent due to the
spatial dependence attested by the Moran’s I test (Table 3). Therefore,
based on both the RMSE and the mean percent error metrics, the most
accurate consistent model was SFEG. The lowest RMSE model, SREM,
besides being inconsistent, also proved unreliable for having returned a
negative point estimate for the spatial effect, in contrast with the results
of Moran’s I test (Table 3). Similar divergences were observed by
Zouabi and Peridy (2015) and Hao et al. (2016), where insignificant
spatial effects in at least some econometric models were observed to-
gether with Moran’s I test rejecting the null hypothesis.

It is useful to compare the discovery of the most accurate consistent
econometric model in this paper with the findings of previous studies. The
improvement in out-of-sample prediction performance by the explicit
treatment of unobserved heterogeneity and spatial autocorrelation is a
common finding. Spatial FE and RE models delivered the most accurate
out-of-sample predictions for cigarette demand curve in US states in
Baltagi and Li (2004). In Chakir and Le Gallo (2013), models accounting
for unobserved heterogeneity and spatially correlated unobserved factors
returned better out of sample predictions when predicting land use shares
for French Départements. In fact, RMSE metrics for these models were
nearly ten times smaller than those from the naïve POLS specification. The
spatial RE model, which yielded one of the best predictions for fires, was
used by Fingleton and Palombi (2013) to generate counterfactual predic-
tions of skilled workers' wages for British towns in the period 1871-1890.
The estimated causal effect on local economies of a macro-recession
proved to be reasonable and in line with historical evidence. The superior
performance of spatial RE and FE models was also detected in the Monte
Carlo experiments of Baltagi et al. (2012).

5.1.2. Relative prediction performance and prediction volatility
Efficient fire brigade positioning means prioritizing locations with

the highest fire counts. This does not necessarily require accurate pre-
diction of absolute fire counts, but it does require accuracy in predicting
relative fire counts. Focussing on the latter, the most accurate con-
sistent model, SFEG, had prediction accuracy of 44 % for the penulti-
mate quintile (Fig. 2, Table 4), with a leap in accuracy to 76 % observed
for the last quintile. This reveals that accuracy increased with the de-
gree of priority for fire brigade allocation, a convenient property of
predictions. In fact, 144 out of the total 719 municipalities (20 %) were
predicted with high accuracy. A number twice as larger as the count of
municipalities routinely receiving federal fire brigades in the Legal
Amazon (at most 70 municipalities from 2008 to 2014, Prevfogo,
2018). This proves that the models were reasonably accurate within the
range of available budget - thus, the low accuracy in intermediate
quintiles and the high volatility in itself are not immediate issues.

The convenient property of most accurately predicting priority
municipalities seems to derive from susceptibility of predictions to both

11 Of course, a third factor, omitted variable bias, could also be relevant.
However, the economics of Amazon fires is not developed enough to reveal
omitted factors correlated with the explanatory variables, and most of main
factors mentioned in the literature are included in the models here (Section 2).
12 In fact, the Monte-Carlo results by Baillie and Baltagi (1994) show that RE

outperforms FE in predictions “S” periods ahead. Therefore, a relevant loss in
prediction accuracy could result whether RE predictions were not generated
and thus omitted based on a ex-ante Hausman test rejecting the consistency of
RE.

13 For similar poor prediction performance of spatial models, see Longhi and
Nijkamp (2007) and Table 4 of Chakir and Le Gallo (2013). The computational
burden of estimating spatial models, as indicated by Lesage and Pace (2009,
chap.3 and 4) and Elhorst, (2014, p.18), should also be highlighted here,
especially with our 47 predictors.
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high and low outliers14, which manifested as a higher volatility of
predicted fire occurrences (Table 4 shows the influence of low outliers
in its fourth column and higher volatility of predictions in the sixth
column 15). High volatility came both from observed fire occurrences
(whose coefficient of variation is of 1.64) and from covariates, espe-
cially the time-variant which are the only type of covariates captured by
the model with the highest coefficient of variation (FE; Table 4).

The spatial variation of model performance was assessed by classi-
fying the relationships between observed and predicted quintiles in
three categories, “successful” (predicted quintile matched observed
quintile), “overpredicted” (predicted quintile above observed quintile)
and “underpredicted” (predicted quintile below observed quintile)
(Fig. 3). Success dominated mainly in the central Amazon. Over-
prediction was most common in Northwest (Amazonas and part of
Roraima) and South (Mato Grosso). Underprediction was more common
in the Northeast, at the boundaries between the Amazon rainforest
biome and the drier Brazilian Savannah biome (Pará and Maranhão
states) and in the North (Amazonas).

This spatial pattern of prediction performance was highly correlated
with the distribution of fires (Fig. 3), again showing the influence of top
fire outliers. The statistical independence between prediction success
and high level of fires was rejected (p-value<0.01%). The success rate
jumped from 40.2 % among municipalities with low to medium level of
fire occurrences to 69 % among municipalities with high level.

5.2. Effective predictors

This section discusses the statistical significance of the potential
predictors informed by literature and their influence on fire occurrences

(detailed estimation results are found in Appendix A). For ease of ex-
pression, the phrase “influence of a particular factor on fires” will be
used strictly to denote prediction power, here measured as partial
correlation, and not causation. Priority is given to the SFEG model and
concordance with other models is used to establish the strength of
evidence regarding prediction power. Whether significance of a factor
is observed only in a minority of the models (three, at most), or in
majority only among the inconsistent non-spatial models, this in-
formation is omitted.

5.2.1. LUCC and agriculture
Regarding the explanatory power of land uses, only deforestation

and forest degradation had significant and positive influences on fires.
The relevant explanatory power of deforestation echoes previous stu-
dies (Arima et al., 2011; Cardoso et al., 2003; Aragão et al., 2008) but
also contradicts a growing evidence base on the decoupling of fires from
deforestation (Aragão and Shimabukuro, 2010; Vasconcelos et al.,
2013; Aragão et al., 2018). Perhaps the strongest defence of the de-
coupling hypothesis was made by Cano‐Crespo et al. (2015) with data
from 2001 to 2010 for the Mato Grosso, Pará and Rondônia states
(central-western Amazon). They stated that correlation between fires
and deforestation was statistically insignificant across time and negli-
gible across space. The authors’ land use data was the same as used in
this paper, including deforested area. However, fire data came from the
NASA/MODIS burned area product “MCD45A1”, which is known to
considerably underestimate Amazon fires due to cloud cover (Cardozo
et al., 2012; Libonati et al., 2014; see the comparison of the fire maps
used by the authors and in this paper in SI.2). Nevertheless, the main
difference with Cano‐Crespo et al. (2015) and other previous studies is
that they did not control for other sources of influence when correlating
deforestation and fires. It is therefore not surprising that our results
contradict previous studies. However, the finding of the present paper
cannot be taken as a final word on the decoupling hypothesis, as a
precise statistical test was not performed for being out of the scope.

The positive relationship found for forest degradation and fire is also
expected as fire and timber extraction - this latter being the source of
degradation captured by the degradation variable are the main sources of
degradation (Barlow et al., 2016), and commonly act synergistically in
agricultural frontier regions (Barlow et al., 2012; Morton et al., 2011;
Rappaport et al., 2018). It is also reasonable that primary forest (which is
the most humid and fire-repelling land cover considered) was negatively
correlated with fires. This is a finding in line with Vasconcelos et al.
(2013); Arima et al. (2007), and Anderson et al. (2015).

Soybeans, fallow, pasture and secondary forest had no meaningful
contribution in explaining the variation of fires across municipality-years
after accounting for the variation in deforestation, primary forest, de-
gradation and the remaining covariates. This opposes the findings of
Cano‐Crespo et al. (2015) and Anderson et al. (2015), which detected
fires mainly on lands occupied with crops and pasture. Again, the con-
tradiction is due to the absence of controls in the cited studies which omit
the prices that influence land uses and value added by agriculture. Here,
by applying such controls, an irrelevant share of the variation on fires
was left to be explained by land uses (except deforestation and forest).

Fires increased with the value added by primary activities, i.e.,
agriculture and natural resource exploitation, after controlling for the
value added by all activities (GDP). This relationship was strong enough
to be significant in all spatial models and in two non-spatial models,
being further attested by a positive and significant (at 0.1 % level)
correlation between fire and share of agriculture in GDP. Similarly, GDP
was significant and negative in most models, including all spatial
models. Whereas the evidence regarding primary activities indicates
that a considerable fraction of Amazon agriculture remains fire-based,
the finding referring to GDP suggests that many municipalities of the
Amazon are no longer in the early level of development in which
agriculture is dominantly fire-based. To reconcile these two findings, an
explanation based in the Kuznets curve development pattern is

Table 2
Hausman tests for the hypothesis of absence of heterogeneity bias (RE vs FE).

Models compared Chi-squared P-value

Ordinary RE vs FE 255.76 <0.001 %
SREM vs SFEM 74.692 <1 %
SREG vs SFEG 1907.1 <0.001 %

Note: function “hausman” of STATA ® was employed in models ran without any
correction for non-spherical disturbances, except for the case of ordinary
models for which efficient estimators were used (with the command option
“sigmamore”).

Table 3
Tests for the spatial independence hypothesis.

Test Statistic P-value

Moran's I: 2008a 0.329 < 0.01 %
Moran's I: 2010a 0.359 < 0.01 %
Moran's I: 2012a 0.395 < 0.01 %
Moran's I: 2014a 0.423 < 0.01 %

a Moran’s I test from package spatgsa command (Pisati, 2001, p.21). It was
applied to the dependent variable separately for each year, based on the same
spatial weights matrix used by spatial models (queen contiguity).

14 The influence of top outliers may lead to believe that separate modelling of
top-fire municipalities would lead to more accurate predictions. However, se-
parate modelling would lead to loss in the variation captured by the parameters’
estimates and associated biases. In addition, models proved flexible enough to
capture the existence of both low and high fire municipalities, as revealed by
the susceptibility to high and low outliers, which manifested in terms of (i) high
success rates in the bottom and top quintiles, (ii) high volatility of predictions,
and the (iii) trend to underestimate (Table 2), the latter revealing the influence
of bottom quintiles. We thank reviewers for suggesting the introduction of this
clarification.
15 In fact, levels below 100 and above 1000 were more frequent in predicted

rather than in observed counts, except for POLS and SREG models.
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proposed. First, the pattern applies to Amazon in a “cross-sectional”
sense, i.e., different development levels were achieved by different
municipalities, which explains fire perpetuation amidst fire reduction.
Second, the Kuznets pattern also applies in a “time-series” sense, i.e.,
many municipalities pursued, in the period analysed, a path of eco-
nomic expansion and fire reduction. This double explanation adheres to
the evidence found by recently published articles showing that the
Kuznets curve development path has been followed by Brazilian
Amazon municipalities (Tritsch and Arvor, 2016; Weinhold et al., 2015,
and Hall and Caviglia-Harris, 2013).

5.2.2. Institutions
Municipalities with larger extents of their territory occupied by

indigenous or protected lands had a significantly higher number of fire
detections. This evidence was strong, being robust to most of the
econometric specifications. However, it must be emphasized that the

finding refers to total fire counts without distinguishing fires inside and
outside indigenous/protected lands. It is, thus, not a proof that fires are
more frequently used by indigenous communities or dwellers in pro-
tected areas. In fact, the share of total fires detected within the two land
types was small in the whole period: 4% for protected areas and 10 %
for indigenous lands16 . Nevertheless, the finding contradicts the studies

Fig. 2. Rate of observations whose rank was successfully predicted across quintiles of the dependent variable, horizontal line at 50 %, vertical line at 60 %.

Table 4
Statistics for predictions of municipal fire counts in 2014.

Model RMSE Mean percent
error a

Predominant error direction
b

Standard
deviation

Coefficient of variation (predicted/
observed) c

Rank success rate, 60-
80% d

Rank success rank rate,
top 20% e

POLS 187.51 −1 % Underestimate 279.26 1.09 41% 76 %
FE 240.82 −64 % Underestimate 408.58 4.35 50% 81 %
RE 185.56 −29 % Underestimate 367.73 1.98 48 % 82 %
SFEM 223.06 −7 % Underestimate 406.70 1.68 44 % 76 %
SFEG 223.00 −5 % Underestimate 406.71 1.66 44 % 76 %
SREM 177.54 −17 % Underestimate 359.29 1.66 50 % 81 %
SREG 191.16 −3 % Underestimate 287.44 1.14 41 % 76 %

Note: amean percent error calculated as the mean(predicted)/mean(observed) – 1; bpredominant error direction = sign (mean (predicted) - mean(observed)), if
positive, overestimates, if negative, underestimates. c The ratio of the coefficients of variation of each model (denominator) and of the observed fire count (nu-
merator), with coefficient of variation being the standard-deviation/mean ratio. d This is the share of observations correctly classified in the 60–80 % deciles (fourth
quintile). e Rate of observations correctly classified in the top 20 % decile (fifth quintile).

16 It is possible that the positive estimate for indigenous lands is a spurious
correlation. From 2008 to 2010 both fires and the area of indigenous lands had
their largest increase in the period, but this seems to be a mere coincidence as
fires augmented due to an extreme drought (Marengo et al., 2011), which can
hardly be connected with the process of indigenous land creation. To test this
“spurious coincidence” explanation, all models (except count data models) were
estimated with indigenous land areas fixed in the levels of 2008. The exercise
was also repeated by fixing in the levels of 2014. Spatial models still resulted in
a positive and significant coefficient for indigenous lands, but the non-spatial
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of Nepstad et al. (2006), a causal analysis that resulted into negative
effects for the two land types, and of Tasker and Arima (2016), who
found no influence of protected areas on fires. However, the results here
can only show that the municipal extents of indigenous lands and
protected areas predict fires. They support no conclusions regarding
underlying causations.

The fire brigade dummy was positively correlated with fires, as
expected, a proof of allocation procedure based on prioritizing top-fire
municipalities (belonging to the top fire count percentile and receiving
a fire brigade were statistically dependent at 0.01% level).

5.2.3. Biophysical
Rain was a weakly statistically significant variable and had a ne-

gative influence on fire occurrences, as expected and in accordance
with previous studies (Aragão et al., 2008; Vasconcelos et al., 2013).
Temperature also had a significant role in predicting fires. The January-
June subannual average was significant in all models (except for SREM)
and the August-October average was significant in most models, in line
with recent climatologic and ecologic research (Malhi et al., 2008; Coe
et al., 2013; Brando et al., 2014). The share of clayey and high clayey
soils, which are more fertile (Farella et al., 2007), and the slope of
terrain, were all negatively correlated with fires. This makes sense
theoretically as land with higher potential profitability is more fa-
vourable to the accumulation of capital, which is a means to finance a
shift to fire-free agriculture (Coomes et al., 2011; Perz, 2003).

5.3. Implications for the improvement of fire brigade allocation

Regarding the identification of priority municipalities for fire bri-
gade positioning, a simple exercise was conducted. Considering that fire
brigades operated in 50 municipalities in 2014, two rates were

calculated (for 2014). First, the success rate of fire brigade allocation
was calculated as the proportion of the top 50 municipalities on ob-
served fire occurrences that were, actually, allocated with fire brigades.
Second, the success rate of the best predictive model (SFEG) was cal-
culated as the proportion of the top 50 municipalities on observed fire
occurrences which were also top 50 on predicted fire occurrences. The
best predictive model was over twice as successful as the current fire
brigade allocation procedure, with success rates of 70 % against 30 %
(see figure B.1 in appendix B for a map of comparative accuracy; the
results reported were generated with the SFEG model without the fire
brigades’ dummy17).

This result clearly demonstrates that fire brigade allocation can be
improved if based on predictions from an accurate model comprising a
wide range of predictors. It is a result which is consistent with previous
studies. Mitsakis et al. (2014) managed to reduce average response time
of Greek fire stations in at least 15 % with an allocation algorithm
predicting fires from "local terrestrial and weather conditions", "ex-
perience of fire brigade", and data on the spatial propagation of the
wildfire. The statistical fire model of Chevalier et al. (2012), containing
multiple socioeconomic explanatory factors, based Belgium’s "national
reform of the fire service". Kiran and Corcoran (2017), aiming to im-
prove the spatial allocation of urban fire stations in Australia, used
quantile regression to predict response time to emergency calls based
on road density and connectivity, as well as socioeconomic living
condition and the presence of children and elderly in the household.
The main implication of the study is that not all calls were being re-
sponded by the stations that could respond fastest. This is similar to the
finding that 70 % of fire brigades were not allocated to the top fire
municipalities in Amazon, suggesting that some of the main forest fire
events would not be accessed as fast as needed. In Kiran and Corcoran
(2017) and in this paper, the evidence on potential inefficiency of
prevailing firefighting practices came from the econometric modelling
of a wide range of explanatory factors. The studies mentioned in this
paragraph, together with the doubling of Amazon fire brigades success
rate by our analysis, are proof that fire prediction modelling is a pro-
mising path for optimizing performance of fire brigades.

Fig. 3. Spatial distribution of classes for predicted vs observed quintiles, SFEG model, 2014 (left), fire quartiles* (right).
*Fire = Time average for fire counts. Low = first quartile (bottom 25 %), medium = second and third quartiles, high = fourth quartile (top 25 %).

(footnote continued)
models changed. The coefficients of the POLS and RE models, the only non-
spatial and non-count data models with significant positive indigenous lands
with the actual dataset, became statistically insignificant. A second source of
the positive coefficient is the existence of 239 observations without indigenous
lands and with low levels of fires (first percentile). These observations corre-
sponded to a larger proportion of the sample (8 %) than observations with high
levels for the two variables (3 %). Most of the former occurred in Brazilian
states covered by other biomes besides the Amazon (51% are in the states of
Maranhão and Tocantins). When the two sources were eliminated from the
data, the positive significant relationship disappeared for both the non-spatial
models and for the most accurate consistent spatial model (SFEG). Thus, the
results here presented mean that the positive (partial) correlation found is
probably not an indication of a positive causal relationship.

17 For clarification, the brigades dummy is excluded to avoid capturing the
current procedure of fire brigade allocation with the econometric model. This
allows separation of the current procedure from the econometric modelling
(otherwise, both of the success rates compared – i.e., that informed by observed
and predicted allocation – would contain information on effective allocation). If
the fire brigade dummy is included in the SFEG model, the success rate drops
sensibly to 58 % (instead of 70 %).
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6. Conclusion and implications for policy and future research

Forest fires are one of the main threats for the conservation and
development of the Brazilian Amazon. Efficient forest fire suppression
policy needs accurate forecasts of future fires. This paper contributed to
this need by building a dataset which is unparalleled in its geographical
and temporal coverage, and in the comprehensiveness of the set of
potential influential factors. Screening of models revealed the im-
portance of accounting for observed and unobserved (time-invariant)
heterogeneity and also for the spatial dependence inherent to fires and
to unobserved factors.

One of the main findings was that an increase in econometric so-
phistication, by including unobserved time-invariant factors and spatial
dependence, was rewarding in terms of practical performance. The top
20 % municipalities in terms of fire detections were predicted with high
accuracy and the top 50 municipalities on the 2014 level of fire de-
tections were more successfully identified by the best model than by the
current fire brigade allocation. A further result was the models’ high
accuracy in predicting the top municipalities up to a number that fits
the federal budget. In addition, temporal and spatial variation of
Amazon fires were shown to be explained by economic, institutional
and climate and physical factors, attesting the systemic nature of the
phenomenon.

Multiple policy recommendations may be derived from the results.
Here, we focus on those that seem more compatible with the limited
resources available to the government for defining fire brigade alloca-
tion, a costly activity in terms of data collection and modelling. The first
recommendation, which is suggested by prominence of fixed effects
estimators, is to consider not only the average fire count in the past four
years but exceedances of historical averages of municipalities. This may
also reveal the beginning of ascending trends that may materialize later
in changes in the rank of municipal fire occurrences. The second re-
commendation is that a bottom-up approach of searching for fire count
clusters at municipal level could better address the spatial auto-
correlation on fires. This is in addition to the “nested” approach of
refining priority states with priority “mesoregions”. The third re-
commendation is that geographical units (states, mesoregions and
municipalities) could be ranked based on an indicator incorporating not
only fire counts, forested area and federal lands, but also deforested
area, degraded forest, value added by agriculture, GDP, indigenous
lands, protected areas, precipitation, temperature and soil quality.

Despite the reasonable quality of predictions there is still room for
improvement, especially since inaccuracy could lead to a waste of
highly scarce public funds. However, further improvements and future
work would require an expansion of the knowledge available. Even
accounting for a comprehensive set of factors stressed in the literature
in this study, only a small proportion of the variation in fires across
space and time was explained (R2< = 46 %). Adding this to the
counterintuitive results obtained regarding the effects of protected and
indigenous lands, it seems clear that future research efforts should be
targeted in two directions. Firstly, theoretically consistent hypotheses
on the mechanisms linking causal factors with fires need to be devel-
oped. Secondly, such hypotheses need to be rigorously tested with
causal inference methods that eliminate confounders that still blur the
published evidence available. The latter was shown to be particularly
relevant regarding the relationship between fires and indigenous lands
(and also protected areas), which does not seem to be fully straight-
forward as suggested by the results. In addition, a causal inference
study of the effectiveness of fire brigades in reducing fire counts is also
needed. This would be a logical complement to the identification of
ways to increase the efficiency of fire brigade allocation.
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